Assessing recycled concrete in terms of its environmental im-pact
DOI:
https://doi.org/10.35933/ENTECHO.2019.12.002Keywords:
concrete, construction and demolition waste, life cycle assessmentAbstract
Recycling of construction and demolition waste produce materials, which can be used as primary resources replacement. However, these recycling processes can be very energy consuming and therefore environmental impacts of such processes should be considered. We assessed environmental impacts of recycled concrete and brick aggregates and also environmental impacts of products with recycled content. The Life Cycle Assessment method was used as analytical tool for evaluating environmental impacts of recycled materials (1 t of concrete or brick aggregates), products (1 m3 recycled concrete mixtures) and constructions (blocks and building foundations). Also, various effects on environment were discussed such as ecotoxicity of concrete products, the consequence of landfilling limitations and carbonation effect. We present the results of environmental impacts assessments to show, what influence the chosen function of recycled product has. We suggest to assess environmental impacts of recycled aggregates considering their future function.
References
Barbosa, R.; Lapa, N.; Dias, D.; Mendes, B., 2013. Concretes containing biomass ashes: Mechanical, chemical, and ecotoxic performances. Construction and Building Materials 48, 457–463. https://doi.org/10.1016/j.conbuildmat.2013.07.031
CEN, 2018. ČSN EN 16757 Udržitelnost staveb - Environmentální prohlášení o produktu - Pravidla produktové kategorie pro beton a betonové prvky.
CEN, 2012. ČSN EN ISO 8692 Kvalita vod - Zkouška inhibice růstu sladkovodních zelených řas.
CEN, 2006. ČSN EN ISO 14040 Environmentální management - Posuzování životního cyklu - Zásady a osnova.
Contarini, A.; Meijer, A., 2015. LCA comparison of roofing materials for flat roofs. Smart and Sustainable Built Environment 4(1), 97–109. https://doi.org/10.1108/SASBE-05-2014-0031
ČAS, 2018. ČSN EN 206 + A1 Beton – Specifikace, vlastnosti, výroba a shoda.
ČAS, 2008. ČSN EN 12620+A1 Kamenivo do betonu.
Debieb, F.; Kenai, S., 2008. The use of coarse and fine crushed bricks as aggregate in concrete. Constr Build Mater 22(5), 886–893. https://doi.org/10.1016/j.conbuildmat.2006.12.013
Dossche, C.; Boel, V.; De Corte, W., 2018. Comparative material-based life cycle analysis of structural beam-floor systems. Journal of Cleaner Production 194, 327–341. https://doi.org/10.1016/j.jclepro.2018.05.062
Du, G.; Safi, M.; Pettersson, L.; Karoumi, R., 2014. Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. Int J Life Cycle Assess 19(12), 1948–1964. https://doi.org/10.1007/s11367-014-0797-z
Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J., 2006. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assessment 11(2), 80–85. https://doi.org/10.1065/lca2006.02.002
Guinée, J., 2001. Handbook on life cycle assessment — operational guide to the ISO standards. Int J LCA 6(5), 255–255. https://doi.org/10.1007/BF02978784
Hossain, Md. U.; Poon, C. S.; Lo, I. M. C.; Cheng, J. C. P., 2016. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation and Recycling 109, 67–77. https://doi.org/10.1016/j.resconrec.2016.02.009
Huang, H.; Wang, T.; Kolosz, B.; Andresen, J.; Garcia, S.; Fang, M.; Maroto-Valer, M. M., 2019. Life-cycle assessment of emerging CO2 mineral carbonation-cured concrete blocks: Comparative analysis of CO2 reduction potential and optimization of environmental impacts. Journal of Cleaner Production 241, 118359. https://doi.org/10.1016/j.jclepro.2019.118359
Jiang, M.; Chen, X.; Rajabipour, F.; Hendrickson, C. T., 2014. Comparative Life Cycle Assessment of Conventional, Glass Powder, and Alkali-Activated Slag Concrete and Mortar. Journal of Infrastructure Systems 20(4), 04014020. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000211
Kenai, S.; Debieb, F., 2011. Caractérisation de la durabilité des bétons recyclés à base de gros et fins granulats de briques et de béton concassés. Mater Struct 44(4), 815–824. https://doi.org/10.1617/s11527-010-9668-7
Lozano-Miralles, J. A.; Hermoso-Orzáez, M. J.; Martínez-García, C.; Rojas-Sola, J. I., 2018. Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis. Sustainability 10(8), 2917. https://doi.org/10.3390/su10082917
Marinković, S.; Dragaš, J.; Ignjatović, I.; Tošić, N., 2017. Environmental assessment of green concretes for structural use. Journal of Cleaner Production 154, 633–649. https://doi.org/10.1016/j.jclepro.2017.04.015
Marinković, S.; Habert, G.; Ignjatović, I.; Dragas, J.; Tošić, N.; Brumaud, C., 2016. Life Cycle Analysis of Recycled Aggregate Concrete with Fly Ash as Partial Cement Replacement, In: Expanding Boundaries: Systems Thinking in the Built Environment. vdf Hochschulverlag, 390–396. https://doi.org/10.3218/3774-6
Marinković, Snežana; Radonjanin, V.; Malešev, M.; Ignjatović, Ivan, 2010. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, Special Thematic Section: Sanitary Landfilling 30(11), 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012
Özkan, A.; Günkaya, Z.; Tok, G.; Karacasulu, L.; Metesoy, M.; Banar, M.; Kara, A., 2016. Life Cycle Assessment and Life Cycle Cost Analysis of Magnesia Spinel Brick Production. Sustainability 8(7), 662. https://doi.org/10.3390/su8070662
Penadés-Plà, V.; Martí, J. V.; García-Segura, T.; Yepes, V., 2017. Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability 9(10), 1864. https://doi.org/10.3390/su9101864
Pešta, J., 2018. Posouzení životního cyklu postupů recyklace demoličních odpadů (Diploma thesis). Vysoká škola chemicko-technologická v Praze, Praha.
Pešta, J.; Pavlů, T.; Kočí, V., 2019. Life Cycle Assessment of Recycling Processes for Demolition Waste. IOP Conf. Ser.: Earth Environ. Sci. 290, 012026. https://doi.org/10.1088/1755-1315/290/1/012026
Rao, A.; Jha, K. N.; Misra, S., 2007. Use of aggregates from recycled construction and demolition waste in concrete. Resources, Conservation and Recycling 50(1), 71–81. https://doi.org/10.1016/j.resconrec.2006.05.010
Schiessel, P.; Hanehara, S.-S.; Hohberg, I.; Jacobs, F.; Meyer, L.; Sommer, P.; Volland, G., 2003. Environmental effects of concrete: state-of-art report, Bulletin / International Federation for Structural Concrete. International Federation for Structural Concrete, Lausanne.
Silva, R. V.; de Brito, J.; Dhir, R. K., 2014. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials 65, 201–217. https://doi.org/10.1016/j.conbuildmat.2014.04.117
Souto-Martinez, A.; Arehart, J. H.; Srubar, W. V., 2018. Cradle-to-gate CO2e emissions vs. in situ CO2 sequestration of structural concrete elements. Energy and Buildings 167, 301–311. https://doi.org/10.1016/j.enbuild.2018.02.042
Thilo, K.; Baitz, M.; Makishi Colodel, C.; Kokborg, M.; Schöll, S.; Rudolf, M.; Thellier, L.; Bos, U.; Bosch, F.; Gonzalez, M.; Schuller, O.; Hengstler, J.; Stoffregen, A.; Thylmann, D., 2019. GaBi Database and Modelling Principles. thinkstep AG, Leinfelden-Echterdingen, Germany.
Tošić, N.; Marinković, S.; Dašić, T.; Stanić, M., 2015. Multicriteria optimization of natural and recycled aggregate concrete for structural use. Journal of Cleaner Production 87, 766–776. https://doi.org/10.1016/j.jclepro.2014.10.070
Turk, J.; Cotič, Z.; Mladenovič, A.; Šajna, A., 2015. Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, Urban Mining 45, 194–205. https://doi.org/10.1016/j.wasman.2015.06.035
Verbitsky, O.; Pushkar, S., 2018. Eco-indicator 99, ReCiPe and anova for evaluating building technologies under LCA uncertainties. Environ. Eng. Manag. J. 17(11), 2549–2559. https://doi.org/10.30638/eemj.2018.253
Vieira, D. R.; Calmon, J. L.; Coelho, F. Z., 2016. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials 124, 656–666. https://doi.org/10.1016/j.conbuildmat.2016.07.125
Zaharieva, R.; Buyle-Bodin, F.; Wirquin, E., 2004. Frost resistance of recycled aggregate concrete. Cement and Concrete Research 34(10), 1927–1932. https://doi.org/10.1016/j.cemconres.2004.02.025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Jan Pešta, Tereza Pavlů, Klára Anna Mocová, Vladimír Kočí
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.