Assessing recycled concrete in terms of its environmental im-pact

Authors

  • Jan Pešta Ústav chemie ochrany prostředí, VŠCHT Praha
  • Tereza Pavlů Univerzitní centrum energeticky efektivních budov ČVUT v Praze; Ústav chemie ochrany prostředí, VŠCHT Praha,
  • Klára Anna Mocová Ústav chemie ochrany prostředí, VŠCHT Praha
  • Vladimír Kočí Ústav chemie ochrany prostředí, VŠCHT Praha

DOI:

https://doi.org/10.35933/ENTECHO.2019.12.002

Keywords:

concrete, construction and demolition waste, life cycle assessment

Abstract

Recycling of construction and demolition waste produce materials, which can be used as primary resources replacement. However, these recycling processes can be very energy consuming and therefore environmental impacts of such processes should be considered. We assessed environmental impacts of recycled concrete and brick aggregates and also environmental impacts of products with recycled content. The Life Cycle Assessment method was used as analytical tool for evaluating environmental impacts of recycled materials (1 t of concrete or brick aggregates), products (1 m3 recycled concrete mixtures) and constructions (blocks and building foundations). Also, various effects on environment were discussed such as ecotoxicity of concrete products, the consequence of landfilling limitations and carbonation effect. We present the results of environmental impacts assessments to show, what influence the chosen function of recycled product has. We suggest to assess environmental impacts of recycled aggregates considering their future function.

References

Barbosa, R.; Lapa, N.; Dias, D.; Mendes, B., 2013. Concretes containing biomass ashes: Mechanical, chemical, and ecotoxic performances. Construction and Building Materials 48, 457–463. https://doi.org/10.1016/j.conbuildmat.2013.07.031

CEN, 2018. ČSN EN 16757 Udržitelnost staveb - Environmentální prohlášení o produktu - Pravidla produktové kategorie pro beton a betonové prvky.

CEN, 2012. ČSN EN ISO 8692 Kvalita vod - Zkouška inhibice růstu sladkovodních zelených řas.

CEN, 2006. ČSN EN ISO 14040 Environmentální management - Posuzování životního cyklu - Zásady a osnova.

Contarini, A.; Meijer, A., 2015. LCA comparison of roofing materials for flat roofs. Smart and Sustainable Built Environment 4(1), 97–109. https://doi.org/10.1108/SASBE-05-2014-0031

ČAS, 2018. ČSN EN 206 + A1 Beton – Specifikace, vlastnosti, výroba a shoda.

ČAS, 2008. ČSN EN 12620+A1 Kamenivo do betonu.

Debieb, F.; Kenai, S., 2008. The use of coarse and fine crushed bricks as aggregate in concrete. Constr Build Mater 22(5), 886–893. https://doi.org/10.1016/j.conbuildmat.2006.12.013

Dossche, C.; Boel, V.; De Corte, W., 2018. Comparative material-based life cycle analysis of structural beam-floor systems. Journal of Cleaner Production 194, 327–341. https://doi.org/10.1016/j.jclepro.2018.05.062

Du, G.; Safi, M.; Pettersson, L.; Karoumi, R., 2014. Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. Int J Life Cycle Assess 19(12), 1948–1964. https://doi.org/10.1007/s11367-014-0797-z

Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J., 2006. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assessment 11(2), 80–85. https://doi.org/10.1065/lca2006.02.002

Guinée, J., 2001. Handbook on life cycle assessment — operational guide to the ISO standards. Int J LCA 6(5), 255–255. https://doi.org/10.1007/BF02978784

Hossain, Md. U.; Poon, C. S.; Lo, I. M. C.; Cheng, J. C. P., 2016. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation and Recycling 109, 67–77. https://doi.org/10.1016/j.resconrec.2016.02.009

Huang, H.; Wang, T.; Kolosz, B.; Andresen, J.; Garcia, S.; Fang, M.; Maroto-Valer, M. M., 2019. Life-cycle assessment of emerging CO2 mineral carbonation-cured concrete blocks: Comparative analysis of CO2 reduction potential and optimization of environmental impacts. Journal of Cleaner Production 241, 118359. https://doi.org/10.1016/j.jclepro.2019.118359

Jiang, M.; Chen, X.; Rajabipour, F.; Hendrickson, C. T., 2014. Comparative Life Cycle Assessment of Conventional, Glass Powder, and Alkali-Activated Slag Concrete and Mortar. Journal of Infrastructure Systems 20(4), 04014020. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000211

Kenai, S.; Debieb, F., 2011. Caractérisation de la durabilité des bétons recyclés à base de gros et fins granulats de briques et de béton concassés. Mater Struct 44(4), 815–824. https://doi.org/10.1617/s11527-010-9668-7

Lozano-Miralles, J. A.; Hermoso-Orzáez, M. J.; Martínez-García, C.; Rojas-Sola, J. I., 2018. Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis. Sustainability 10(8), 2917. https://doi.org/10.3390/su10082917

Marinković, S.; Dragaš, J.; Ignjatović, I.; Tošić, N., 2017. Environmental assessment of green concretes for structural use. Journal of Cleaner Production 154, 633–649. https://doi.org/10.1016/j.jclepro.2017.04.015

Marinković, S.; Habert, G.; Ignjatović, I.; Dragas, J.; Tošić, N.; Brumaud, C., 2016. Life Cycle Analysis of Recycled Aggregate Concrete with Fly Ash as Partial Cement Replacement, In: Expanding Boundaries: Systems Thinking in the Built Environment. vdf Hochschulverlag, 390–396. https://doi.org/10.3218/3774-6

Marinković, Snežana; Radonjanin, V.; Malešev, M.; Ignjatović, Ivan, 2010. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, Special Thematic Section: Sanitary Landfilling 30(11), 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012

Özkan, A.; Günkaya, Z.; Tok, G.; Karacasulu, L.; Metesoy, M.; Banar, M.; Kara, A., 2016. Life Cycle Assessment and Life Cycle Cost Analysis of Magnesia Spinel Brick Production. Sustainability 8(7), 662. https://doi.org/10.3390/su8070662

Penadés-Plà, V.; Martí, J. V.; García-Segura, T.; Yepes, V., 2017. Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability 9(10), 1864. https://doi.org/10.3390/su9101864

Pešta, J., 2018. Posouzení životního cyklu postupů recyklace demoličních odpadů (Diploma thesis). Vysoká škola chemicko-technologická v Praze, Praha.

Pešta, J.; Pavlů, T.; Kočí, V., 2019. Life Cycle Assessment of Recycling Processes for Demolition Waste. IOP Conf. Ser.: Earth Environ. Sci. 290, 012026. https://doi.org/10.1088/1755-1315/290/1/012026

Rao, A.; Jha, K. N.; Misra, S., 2007. Use of aggregates from recycled construction and demolition waste in concrete. Resources, Conservation and Recycling 50(1), 71–81. https://doi.org/10.1016/j.resconrec.2006.05.010

Schiessel, P.; Hanehara, S.-S.; Hohberg, I.; Jacobs, F.; Meyer, L.; Sommer, P.; Volland, G., 2003. Environmental effects of concrete: state-of-art report, Bulletin / International Federation for Structural Concrete. International Federation for Structural Concrete, Lausanne.

Silva, R. V.; de Brito, J.; Dhir, R. K., 2014. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials 65, 201–217. https://doi.org/10.1016/j.conbuildmat.2014.04.117

Souto-Martinez, A.; Arehart, J. H.; Srubar, W. V., 2018. Cradle-to-gate CO2e emissions vs. in situ CO2 sequestration of structural concrete elements. Energy and Buildings 167, 301–311. https://doi.org/10.1016/j.enbuild.2018.02.042

Thilo, K.; Baitz, M.; Makishi Colodel, C.; Kokborg, M.; Schöll, S.; Rudolf, M.; Thellier, L.; Bos, U.; Bosch, F.; Gonzalez, M.; Schuller, O.; Hengstler, J.; Stoffregen, A.; Thylmann, D., 2019. GaBi Database and Modelling Principles. thinkstep AG, Leinfelden-Echterdingen, Germany.

Tošić, N.; Marinković, S.; Dašić, T.; Stanić, M., 2015. Multicriteria optimization of natural and recycled aggregate concrete for structural use. Journal of Cleaner Production 87, 766–776. https://doi.org/10.1016/j.jclepro.2014.10.070

Turk, J.; Cotič, Z.; Mladenovič, A.; Šajna, A., 2015. Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, Urban Mining 45, 194–205. https://doi.org/10.1016/j.wasman.2015.06.035

Verbitsky, O.; Pushkar, S., 2018. Eco-indicator 99, ReCiPe and anova for evaluating building technologies under LCA uncertainties. Environ. Eng. Manag. J. 17(11), 2549–2559. https://doi.org/10.30638/eemj.2018.253

Vieira, D. R.; Calmon, J. L.; Coelho, F. Z., 2016. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials 124, 656–666. https://doi.org/10.1016/j.conbuildmat.2016.07.125

Zaharieva, R.; Buyle-Bodin, F.; Wirquin, E., 2004. Frost resistance of recycled aggregate concrete. Cement and Concrete Research 34(10), 1927–1932. https://doi.org/10.1016/j.cemconres.2004.02.025

Published

2019-12-31

How to Cite

Pešta, J. (2019) “Assessing recycled concrete in terms of its environmental im-pact”, ENTECHO, 2(2), pp. 1–11. doi: 10.35933/ENTECHO.2019.12.002.

Issue

Section

Peer reviewed articles