Cost-efficient nitrogen removal from reject water and sewage via partial nitritation-anammox

Authors

  • Vojtěch Kouba Ústav technologie vody a prostředí, VŠCHT Praha Technická 5, 166 28 Praha 6
  • Jan Bartáček Ústav technologie vody a prostředí, VŠCHT Praha Technická 5, 166 28 Praha 6

DOI:

https://doi.org/10.35933/ENTECHO.2019.04.001

Keywords:

anammox, deammonification, municipal wastewater, reject water, nitritation bacteria, nitratation bacteria

Abstract

Partial nitritation-anammox (PN/A) process removes nitrogen from wastewater with 50% reduction of aeration costs, 80% less excess sludge and no consumption of organic carbon. PN/A is an established process for the removal of nitrogen from reject water from anaerobic digestion and other similarly warm and concentrated streams. On such wastewater, PN/A has been applied in full scale for over 10 years under names such as ANAMMOX®, ANITA™ Mox, DEMON® or TERRAMOX®, whose optimized installations consistently achieve nitrogen removal loading rates of 0,5–2,3 kg∙m–3∙d–1. The current challenge for research is to implement PN/A into the main stream of cold municipal wastewater, the specific challenges being (i) suppression of undesirable nitrite oxidizing bacteria (NOB) and (ii) adaptation of anammox microorganisms to low temperatures. Our initial experiences with one-stage PN/A in the main stream led us to the separation of PN/A in two subsequent reactors. Subsequently, we developed a strategy for NOB suppression in partial nitritation even under 12 °C, which we then successfully tested in the pilot scale. Furthermore, we found that anammox can be adapted to low temperatures using cold shocks. In sum, these results will enable extending the savings for nitrogen removal into the main stream of wastewater at WWTP.

References

Beneš, O.; Láska, T.; Chudoba, P.; Novák, L.; Šorm, R., 2012. Výhody, úskalí a praktická aplikace deamonifikace kalové vody – technologie AnitaMOX. Odpadové vody 2012. Asociácia čistiarenských expertov Slovenskej republiky, Štrbské Pleso.

Bowden, G.; Stensel, H. D.; Tsuchihashi, R., 2015. Technologies for Sidestream nitrogen removal. Water Environment Research Foundation. https://doi.org/10.2166/9781780407890

Cao, Y.; Kwok, B. H.; Van Loosdrecht, M.; Daigger, G. T.; Png, H. Y.; Long, W. Y.; Chye, C. S.; Ghani, Y. A., 2017a. The occurrence of enhanced biological phosphorus removal in a 200,000 m3/day partial nitration and anammox activated sludge process at the Changi water reclamation plant, Singapore. Water Sci. Technol. 75(3), 741–751. https://doi.org/10.2166/wst.2016.565

Cao, Y.; van Loosdrecht, M.; Daigger, G. T., 2017b. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol. 101(4), 1365–1383. https://doi.org/10.1007/s00253-016-8058-7

De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mozo, I.; Gaval, G.; Caligaris, M.; Barillon, B.; Vlaeminck, S. E.; Sperandio, M., 2018. Enrichment and adaptation yield high anammox conversion rates under low temperatures. Bioresource Technol. 250, 505–512. https://doi.org/10.1016/j.biortech.2017.11.079

Erguder, T. H.; Boon, N.; Vlaeminck, S. E.; Verstraete, W., 2008. Partial Nitrification Achieved by Pulse Sulfide Doses in a Sequential Batch Reactor. Environ. Sci. Technol. 42(23), 8715–8720. https://doi.org/10.1021/es801391U

Hamersley, M. R.; Lavik, G.; Woebken, D.; Rattray, J. E.; Lam, P.; Hopmans, E. C.; Damsté, J. S. S.; Krüger, S.; Graco, M.; Gutiérrez, D., 2007. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr. 52(3), 923–933. https://doi.org/10.4319/lo.2007.52.3.0923

Hellinga, C.; Schellen, A. A. J. C.; Mulder, J. W.; van Loosdrecht, M. C. M.; Heijnen, J. J., 1998. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 37(9), 135–142. https://doi.org/10.1016/s0273-1223(98)00281-9

Hendrickx, T. L. G.; Kampman, C.; Zeeman, G.; Temmink, H.; Hu, Z.; Kartal, B.; Buisman, C. J. N., 2014. High specific activity for anammox bacteria enriched from activated sludge at 10°C. Bioresource technol. 163, 214–222. https://doi.org/10.1016/j.biortech.2014.04.025

Hoekstra, M.; Geilvoet, S. P.; Hendrickx, T. L.; van Erp Taalman Kip, C. S.; Kleerebezem, R.; van Loosdrecht, M. C., 2018. Towards mainstream anammox: lessons learned from pilot-scale research at WWTP Dokhaven. Environ. Technol., 1–13. https://doi.org/10.1080/09593330.2018.1470204

Jetten, M. S. M.; Horn, S. J.; van Loosdrecht, M. C. M., 1997. Towards a more sustainable municipal wastewater treatment system. Water Sci. Technol. 35(9), 171–180. https://doi.org/10.1016/s0273-1223(97)00195-9

Jin, R. C.; Yang, G. F.; Zhang, Q. Q.; Ma, C.; Yu, J. J.; Xing, B. S., 2013. The effect of sulfide inhibition on the ANAMMOX process. Water Res. 47(3), 1459–1469. https://doi.org/10.1016/j.watres.2012.12.018

Kouba, V.; Catrysse, M.; Stryjova, H.; Jonatova, I.; Volcke, E. I. P.; Svehla, P.; Bartacek, J., 2014. The impact of influent total ammonium nitrogen concentration on nitrite-oxidizing bacteria inhibition in moving bed biofilm reactor. Water Sci. Technol. 69(6), 1227–1233. https://doi.org/10.2166/wst.2013.757

Kouba, V.; Darmal, R.; Vejmelkova, D.; Jenicek, P.; Bartacek, J., 2018a. Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures. Biotechnol. Prog. 34(1), 277–281. https://doi.org/10.1002/btpr.2570

Kouba, V.; Dolejš, P.; Švehla, P.; Čejka, J.; Vodička, O.; Benáková, A.; Máca, J.; Jeníček, P.; Bartáček, J., 2018b. Jak ušetřit na odstraňování dusíku na ČOV: 10 let zahraničních zkušeností s procesem anammox. SOVAK (5), 14–21.

Kouba, V.; Proksova, E.; Wiesinger, H.; Vejmelkova, D.; Bartacek, J., 2017a. Good servant, bad master: sulfide influence on partial nitritation. Water Sci. Technol. 76(5). https://doi.org/10.2166/wst.2017.490

Kouba, V.; Svehla, P.; Catrysse, M.; Prochazkova, L.; Radechovska, H.; Jenicek, P.; Bartacek, J., 2017b. How biomass growth mode affects ammonium oxidation start-up and NOB inhibition in the partial nitritation of cold and diluted reject water. Environ. Technol., 1–10. https://doi.org/10.1080/09593330.2017.1403491

Kouba, V.; Thanh, H.; Plutová, B.; Paulů, A.; Šátková, B.; Vejmelková, D.; Dolejš, P.; Hejnic, J.; Jeníček, P.; Bartáček, J., 2018c. Nitritace v hlavním proudu splaškové odpadní vody po anaerobním předčištění: zkušenosti z poloprovozu. Odpadové vody 2018, Štrbské Pleso.

Kouba, V.; Vejmelková, D.; Proksova, E.; Wiesinger, H.; Concha, M.; Dolejs, P.; Hejnic, J.; Jenicek, P.; Bartacek, J., 2017c. High-rate partial nitritation of municipal wastewater after psychrophilic anaerobic pre-treatment. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b02078

Kouba, V.; Widiayuningrum, P.; Chovancova, L.; Jenicek, P.; Bartacek, J., 2016. Applicability of one-stage partial nitritation and anammox in MBBR for anaerobically pre-treated municipal wastewater. J. Ind. Microbiol. Biot. 43(7), 965–975. https://doi.org/10.1007/s10295-016-1766-2

Kuypers, M. M.; Lavik, G.; Woebken, D.; Schmid, M.; Fuchs, B. M.; Amann, R.; Jørgensen, B. B.; Jetten, M. S., 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America 102(18), 6478–6483. https://doi.org/10.1073/pnas.0502088102

Lackner, S.; Gilbert, E. M.; Vlaeminck, S. E.; Joss, A.; Horn, H.; van Loosdrecht, M. C. M., 2014. Full-scale partial nitritation/anammox experiences – An application survey. Water Res. 55, 292–303. https://doi.org/10.1016/j.watres.2014.02.032

Lotti, T.; Kleerebezem, R.; Abelleira-Pereira, J.; Abbas, B.; van Loosdrecht, M., 2015a. Faster through training: the anammox case. Water res. 81, 261–268. https://doi.org/10.1016/j.watres.2015.06.001

Lotti, T.; Kleerebezem, R.; Hu, Z.; Kartal, B.; De Kreuk, M. K.; Van Erp Taalman Kip, C.; Kruit, J.; Hendrickx, T. L. G.; Van Loosdrecht, M. C. M., 2015b. Pilot-scale evaluation of anammox-based mainstream nitrogen removal from municipal wastewater. Environ. Technol. 36(9), 1167–1177. https://doi.org/10.1080/09593330.2014.982722

Lotti, T.; Kleerebezem, R.; van Loosdrecht, M. C. M., 2014. Effect of temperature change on anammox activity. Biotechnol. Bioeng. 112(1), 98–103. https://doi.org/10.1002/bit.25333

Mulder, A.; van de Graaf, A. A.; Robertson, L. A.; Kuenen, J. G., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology 16(3), 177–183. https://doi.org/10.1016/0168-6496(94)00081-7

Rysgaard, S.; Glud, R. N.; Risgaard-Petersen, N.; Dalsgaard, T., 2004. Denitrification and anammox activity in Arctic marine sediments. Limnol. Oceanogr. 49(5), 1493–1502. https://doi.org/10.4319/lo.2004.49.5.1493

Seuntjens, D.; Bundervoet, B.; Mollen, H.; De Mulder, C.; Wypkema, E.; Verliefde, A.; Nopens, I.; Colsen, J.; Vlaeminck, S., 2016. Energy efficient treatment of A-stage effluent: pilot-scale experiences with shortcut nitrogen removal. Water Sci. Technol. 73(9), 2150–2158. https://doi.org/10.2166/wst.2016.005

Strous, M.; Heijnen, J. J.; Kuenen, J. G.; Jetten, M. S. M., 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biot. 50(5), 589–596. https://doi.org/10.1007/s002530051340

Tomaszewski, M.; Cema, G.; Ziembińska-Buczyńska, A., 2019. Short-term effects of reduced graphene oxide on the anammox biomass activity at low temperatures. Sci. Total Environ. 646, 206–211. https://doi.org/10.1016/j.scitotenv.2018.07.283

van der Star, W. R. L.; Abma, W. R.; Blommers, D.; Mulder, J. W.; Tokutomi, T.; Strous, M.; Picioreanu, C.; van Loosdrecht, M. C. M., 2007. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41(18), 4149–4163. https://doi.org/10.1016/j.watres.2007.03.044

Wett, B., 2006. Solved upscaling problems for implementing deammonification of rejection water. Water Sci. Technol. 53(12), 121–128. https://doi.org/10.2166/wst.2006.413

Zhang, X.; Chen, Z.; Zhou, Y.; Ma, Y.; Ma, C.; Li, Y.; Liang, Y.; Jia, J., 2019. Impacts of the heavy metals Cu (II), Zn (II) and Fe (II) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe (II) makes a difference. Sci. Total Environ. 648, 798–804. https://doi.org/10.1016/j.scitotenv.2018.08.206

Published

2019-06-30

How to Cite

Kouba, V. and Bartáček, J. (2019) “Cost-efficient nitrogen removal from reject water and sewage via partial nitritation-anammox”, ENTECHO, 2(1), pp. 1–5. doi: 10.35933/ENTECHO.2019.04.001.

Issue

Section

Peer reviewed articles