Specifics of the AWARE characterization model for water footprint assessment
Keywords:
Water footprint, life cycle assessment, AWARE characterization modelAbstract
The Available Water Remaining (AWARE) characterization model is recommended by the WULCA (Water Use in LCA) working group as a result of a consensus among experts and stakeholders in the matter of characterization of impacts associated with the amount of water used. In the article we reviewed the principles of the method, the initial assumption and values of the characterization factors developed for easy application of the method in practice. We pointed out the problems associated with not distinguishing among various water resources and the inappropriate way of calculation the values of the characterization factor at the country level. In conclusion we opened the question of choosing reference values for the normalization of the characterization factor.
References
Ansorge, L.; Beránková, T., 2017. LCA Water Footprint AWARE characteriza- tion factor based on local specific conditions. EJSD 6(4), 13–20. https://doi.org/10.14207/ejsd.2017.v6n4p13
Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M. J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A. V.; Ridoutt, B.; Oki, T.; Worbe, S.; Pfister, S., 2018. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23(2), 368–378. https://doi.org/10.1007/s11367-017-1333-8
Boulay, A.-M.; Bare, J.; De Camillis, C.; Döll, P.; Gassert, F.; Gerten, D.; Hum- bert, S.; Inaba, A.; Itsubo, N.; Lemoine, Y.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A. V.; Ridoutt, B.; Schencker, U.; Shirakawa, N.; Vionnet, S.; Worbe, S.; Yoshikawa, S.; Pfister, S., 2015. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. The International Journal of Life Cycle Assessment 20(5), 577–583. https://doi.org/10.1007/s11367-015-0869-8
ČSN ISO 14046, 2016. Environmentální management – Vodní stopa – Zásady, požadavky a směrnice. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha.
Flörke, M.; Kynast, E.; Bärlund, I.; Eisner, S.; Wimmer, F.; Alcamo, J., 2013. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environmental Change 23(1), 144–156. https://doi.org/10.1016/j.gloenvcha.2012.10.018
Hoekstra, A. Y., 2016. A critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators 66, 564–573. https://doi.org/10.1016/j.ecolind.2016.02.026
Hoekstra, A. Y.; Chapagain, A. K.; Aldaya, M. M.; Mekonnen, M. M., 2011. The water footprint assessment manual: setting the global standard. Earthscan, London; Washington, DC.
Müller Schmied, H.; Eisner, S.; Franz, D.; Wattenbach, M.; Portmann, F. T.; Flörke, M.; Döll, P., 2014. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci. 18(9), 3511–3538. https://doi.org/10.5194/hess-18-3511-2014
Pastor, A. V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P., 2014. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18(12), 5041–5059. https://doi.org/10.5194/hess-18-5041-2014
Wichelns, D., 2017. Volumetric water footprints, applied in a global context, do not provide insight regarding water scarcity or water quality degradation. Ecological Indicators 74, 420–426. https://doi.org/10.1016/j.ecolind.2016.12.008
Yano, S.; Hanasaki, N.; Itsubo, N.; Oki, T., 2015. Water Scarcity Footprints by Considering the Differences in Water Sources. Sustainability 7(8), 9753–9772. https://doi.org/10.3390/su7089753
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 ENTECHO
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.