Effect of activated sludge adaptation on biodegradation of antibiotics and accumulation of resistance genes
DOI:
https://doi.org/10.35933/ENTECHO.2019.06.001Keywords:
antibiotics, antibiotic resistance, activated sludge, biodegradation, PCCPsAbstract
Activated sludge in wastewater treatment plants is constantly exposed to low concentrations of antimicrobials and other drugs. This raises the question of how microorganisms approach to these substances in the sewage treatment plant. Whether they can adapt, degrade, or use antibiotics as a substrate in this environment or the activated sludge neglects these substances.
To assess the adaptation of activated sludge, the PCR method for monitoring antibiotic resistance genes and biodegradability tests were used. These tests were carried out with activated sludge from WWTP and sludge adapted in laboratory SBR models at 500 ng∙l−1 and 500 μg∙l−1 of chosen antibiotics. Their biodegradability was assessed according to ČSN ISO 14593. The tested substances were monitored by group determination of total inorganic carbon. The chosen substances were: benzylpenicillin, ampicillin, streptomycin, erythromycin, chloramphenicol, sulfamethoxazole and trimethoprim.
Activated sludge had no developed activity for biodegradation of tested antibiotics. It is likely that the high load of readily biodegradable substrate and the short retention of the wastewater at the WWTP lead to the activated sludge not being forced to actively utilize these substances and will only prevent from them by forming defence mechanisms using antibiotic resistance genes. Low concentrations of antibiotics in SBR models produced selective pressure on microorganisms and stimulated the spread of antibiotic resistance genes.
References
Barra Caracciolo, A.; Topp, E.; Grenni, P., 2015. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. Journal of Pharmaceutical and Biomedical Analysis 106, 25–36. https://doi.org/10.1016/j.jpba.2014.11.040
Bergh, J. J.; Breytenbach, J. C.; Wessels, P. L., 1989. Degradation of trimethoprim. Journal of Pharmaceutical Sciences 78(4), 348–350. https://doi.org/10.1002/jps.2600780418
Birošová, L.; Mackuľak, T.; Bodík, I.; Ryba, J.; Škubák, J.; Grabic, R., 2014. Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Science of The Total Environment 490, 440–444. https://doi.org/ 10.1016/j.scitotenv.2014.05.030
Blahna, M. T.; Zalewski, C. A.; Reuer, J.; Kahlmeter, G.; Foxman, B.; Marrs, C. F., 2006. The role of horizontal gene transfer in the spread of trimethoprim–sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. Journal of Antimicrobial Chemotherapy 57(4), 666–672. https://doi.org/10.1093/jac/dkl020
Bonvin, F.; Omlin, J.; Rutler, R.; Schweizer, W. B.; Alaimo, P. J.; Strathmann, T. J.; McNeill, K.; Kohn, T., 2012. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: evidence for abiotic back-transformation. Environmental science & technology 47(13), 6746–6755. https://doi.org/10.1021/es303777k
Brar, S. K., 2011. Hazardous Materials: Types, Risks, and Control. Nova Science Publishers.
Ducey, S. B.; Sapkota, A., 2010. Presence of Pharmaceuticals and Personal Care Products in the Environment – A Concern for Human Health? 1048, 345–365. https://doi.org/10.1021/bk-2010-1048.ch017
Escher, B. I.; Baumgartner, R.; Koller, M.; Treyer, K.; Lienert, J.; McArdell, C. S., 2011. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water research 45(1), 75–92. https://doi.org/10.1016/j.watres.2010.08.019
García-Galán, M. J.; Silvia Díaz-Cruz, M.; Barceló, D., 2008. Identification and determination of metabolites and degradation products of sulfonamide antibiotics. TrAC Trends in Analytical Chemistry 27(11), 1008–1022. https://doi.org/10.1016/j.trac.2008.10.001
Granados, O.; Meza Ruiz, G., 2005. Streptidine, a metabolic derivative produced after administration of streptomycin in vivo, is vestibulotoxic in rats. Histology and histopathology. https://doi.org/10.14670/HH-20.357
Jiang, B.; Li, A.; Cui, D.; Cai, R.; Ma, F.; Wang, Y., 2014. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading
bacterium. Applied microbiology and biotechnology 98(10), 4671–4681. https://doi.org/10.1007/s00253-013-5488-3
Kümmerer, K., 2003. Signifikance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy 52, 3. https://doi.org/10.1093/jac/dkg293
Kümmerer, K., 2004. Resistance in the environment. Journal of Antimicrobial Chemotherapy 54(2), 311–320. https://doi.org/10.1093/jac/dkh325
Kümmerer, K., 2009a. Antibiotics in the aquatic environment – A review – Part I. Chemosphere 75(4), 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086
Kümmerer, K., 2009b. Antibiotics in the aquatic environment – A review – Part II. Chemosphere 75(4), 435–441. https://doi.org/10.1016/j.chemosphere.2008.12.006
Macharová, H.; Sýkora, V., 2007. Ověření metody CO2 headspace pro hodnocení úplné biologické rozložitelnosti. Seminář o tenzidoch a detergentoch, Bojnice (SK).
Miège, C.; Choubert, J. M.; Ribeiro, L.; Eusèbe, M.; Coquery, M., 2009. Fate of pharmaceuticals and personal care products in wastewater treatment plants – Conception of a database and first results. Environmental Pollution 157(5), 1721–1726. https://doi.org/10.1016/j.envpol.2008.11.045
Monstein, H.-J.; Östholm-Balkhed, Å.; Nilsson, M. V.; Nilsson, M.; Dornbusch, K.; Nilsson, L. E., 2007. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae.
APMIS 115(12), 1400–1408. https://doi.org/10.1111/j.1600-0463.2007.00722.x
Peng, X.; Wang, Z.; Kuang, W.; Tan, J.; Li, K., 2006. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Science of The Total Environment 371(1), 314–322. https://doi.org/10.1016/j.scitotenv.2006.07.001
Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W., 2014. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC–MS/MS. Journal of Chromatography B 969, 162–170. https://doi.org/10.1016/j.jchromb.2014.08.008
Shen, Y.; Zhao, W.; Zhang, C.; Shan, Y.; Shi, J., 2017. Degradation of streptomycin in aquatic environment: kinetics, pathway, and antibacterial activity analysis. Environ. Sci. Pollut. Res. 24(16), 14337–14345. https://doi.org/10.1007/s11356-017-8978-5
Smith, A. L.; Erwin, A. L.; Kline, T.; Unrath, W. C.; Nelson, K.; Weber, A.; Howald, W. N., 2007. Chloramphenicol is a substrate for a novel nitroreductase pathway in Haemophilus influenzae. Antimicrobial agents and chemotherapy 51(8), 2820–2829.
Snyder, L.; Champness, W., 2007. Molecular Genetics of Bacteria. ASM Press.
Tylová, T.; Flieger, M.; Olšovská, J., 2013. Determination of antibiotics in influents and effluents of wastewater-treatment-plants in the Czech Republic – development and application of the SPE and a UHPLC- ToFMS method. Analytical Methods 5(8), 2110–2118. https://doi.org/10.1039/C3AY00048F
Vejmelková, D.; Časarová, K.; Proksová, E.; Říhová Ambrožová, J., 2018. Detekce genů resistence na antibiotika na čistírně odpadních vod: Testování metodiky. Vodárenská biologie 2018, Praha, 6.–7. 2. 2018.
Vila-Costa, M.; Gioia, R.; Aceña, J.; Pérez, S.; Casamayor, E. O.; Dachs, J., 2017. Degradation of sulfonamides as a microbial resistance mechanism. Water research 115, 309–317. https://doi.org/10.1016/j.watres.2017.03.007
Wanner, F.; Vana, M.; Fuksa, J. K.; Matousova, L., 2011. Removal of selected pharmaceuticals during wastewater treatment in wastewater treatment plants. Vodni Hospodářství 61(9), 361–363.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Ivan Karpíšek, Jitka Zachová, Dana Vejmelková, Vladimír Sýkora
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.